=Pr-L

Image Processing

Chapter 1

Characterization of
continuous images

Prof. Michael Unser, LIB

September 2022

CONTENT

= 1.1 Images as functions

Hilbert-space formulation
Two-dimensional systems

= 1.2 Multidimensional Fourier transform
Properties
Dirac impulse, etc...

= 1.3 Characterization of LS| systems

Multidimensional convolution
Modeling of optical systems
Examples of transfer functions

Unser: Image processing 1-2



1.1 IMAGES AS FUNCTIONS

= Continuous image representation
= Hilbert-space formulation

= Space of finite-energy images

= Two-dimensional systems

= Linear, shift-invariant systems

Unser: Image processing

Continuous image representation

2D light intensity function: f(z,y)

= spatial coordinates: (x,y)

= brightness (or gray level): f € [0, fimax] fo o white

0: black

Unser: Image processing
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Hilbert-space formulation

Hilbert space = infinite-dimensional Euclidean space

Unifying point of view: images as points in a Hilbert space 'H

m 1D signals

= Vectors of samples RN
u= (up,ug, -+ ,un)

= Discrete signals U5(7)
W= (- UG UL, Uk )

= Continuously-defined signals Ly (R)

u=u(x), xR

m 2D images

= Finite arrays of pixels RV
= Discrete images 05(72)
= Continuously-defined images Lo(R?)
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Hilbert space: definition

A Hilbert space H is a complete* vector space with an inner product.
*Completeness: all Cauchy sequences in ‘H have a limit in H.

m H-inner product: (u,v)

(i) Linearity: (a1u + av, w) = a1 (u, w) + az (v, w),
Yayi,as € C, Yu,v,w € H

(i) Symmetry: (u,v)* = (v, u), Vu,v € H

(iii) Positive definite: (u,u) > 0, Vu # 0,u € H

m Induced norm m Cauchy-Schwarz inequality
lull = (u, u)'/? [(w, ) < Jlull - [Jv]]
N
Example: u = (u1,ug, -+ ,un) € CV (u,v) = Zunv;
n=1
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Space of finite-energy images

m Images as 2D functions of the space variables

f(z,y) € La(R?)

More compact vector notation: f(x) with x = (x,y) € R?

m 2D Lo-inner product

+oo +oo
Gt [ [ e ) dsdy
+oo +o0o
1 fllz. = V{f, flo, = \// /_ | f (2, y)|? dady

m Space of finite-energy functions

£ {f(@): @ c B, |f|}, < +oo}
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Space of finite energy images (cont’d)

m Extension to higher dimensions

f(x)withx = (21, ,24) € RY

(f,g LQRd)—/ f(x)g"(x) doy ---dag

Ly(RY) £ { f(w) : @ € R, | f|12, o) < +00}
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Examples of image functions

m 2D-Gaussian

o(r.y) = 5 exp (_@3_;1/))

g(.??, y) S L2(R2)

m Finite support {2 and bounded images

{ V() ¢Q,  flzy) =
|

0
= 2oz dad
V(z,y) e R?, |f(z,y)] < Co 71 0 [ Jo dady

4
f € Ly(R?)

e 1-9
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Plane waves
m Sinusoidal gratings
s(z,y) = A - cos(wrx + woy + @) = A - cos({w, x) + ¢)

Wave vector

w = (w1,ws)

\\\ ) . 2
“‘r/Pveriod: T = il

2 2
VWi +w;

Note that s(x,y) ¢ L2(R?)

However:

S(xa y) ) ’UJ(JJ, y) S L2(R2)
where

w(x,y): finite-support and bounded window function.

, 1-10
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Two-dimensional systems

m Mapping of an image function into another
T : Ly(R%) — Ly(R?)
9(z,y) = T{f}(z,y)
More (or less) pedandic notations:
g(x) =T{f()}(=)
g="T{f}

m Linear operators

T{aifi +asfa}(z) = arT{fi}(x) + a2T{f2}(x)
\V/fl, f2 € 'H and Val,ag e C

Unser: Image processing

Examples
= Gradient operator is linear
of(z, of (x,
T == 200 g =g, = 2y

= Geometric operators are linear (warping)

Ta{f}(z,y) = f(Gi1(z,y), G2(z,y))
where G1(x,y) and Gz (x,y) are arbitrary (non-linear)

= Threshold operator is non-linear

Ti{f}(x.y) = { Lo 1f (@)l = Ty

0, otherwise

Unser: Image processing



Linear, shift-invariant systems

m Definition. 7 is shift-invariant iff: 7{f(- — xo)}(x) = 7{f(:)}(x — x0)

m Linear, shift-invariant system (LSI): model of most physical imaging devices

m Complex sinusoids: s(z,y) = exp{j(w,x + wyy)}

Compact vector notation: s(x) = e/ {«:®) Direction of propagation:

with w = (wm wy), T = (x, y) \ u |lwl|
- \“z\Period: T = 2m
]l

Radial frequency: [lw|| = |/w2 4 w2

Theorem. The complex sinusoid e/{“*®) is an eigenfunction of the LSl
system 7 with eigenvalue A\ = \(w) = 7 {e/(“)}(0).

1-13
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Complex sinusoids and LSI systems

o (w.) )\ - ed{w,T)

. T T
N N

Proof: (in d dimensions)
= Input signal: s(z) = e/ (@)

= Shift = Multiplication

= If T is linear and shift-invariant

Sl: T{s(- —zo)Hz) = T{s(-)} (= — =)

Lin: T{s(- — @)} (@) = T{e 7o) - o101 (@) = i) . T{s()} (@)
Setxg=x: A=T{s}(0)= e 7T {s}(x) = X & =T{s}(x)

Unser: Image processing



1.2 MULTI-D FOURIER TRANSFORM

= Definition

= Separability

= Properties

= Dirac impulse

= Dirac related Fourier transforms

= Application: finding the orientation
= [mportance of the phase

Unser: Image processing 1-15

2D Fourier transform: definition

m 2D Fourier transform: flwa,wy) = / / f(, y)e I @ twuy) qady

L[ e (waztwyy)
272 /_OO /_OO F(wa wy)e? @ o909 duw, duw,

(a.e. = almost everywhere)

mInverse Fourier transform:  f(z,y) =

m Sufficient condition for existence:

+oo +oo
/ / F(z,)dzdy < 400 & € Li(R?)

Vector notation & f(@)e =) dady
Spatial variables: = = (z,y) € R?
Frequency variables: w = (wy,w,) € R? [ 4
Equivalent phase: (w, z) = w'z = w,x + wyy f(x) = (21) /R? f(w)eﬂ“’ ®) dw Oy

(a.e.)

1-16

Unser: Image processing



Mathematical extensions

m Multidimensional Fourier transform (d dimensions)
Spatial variables: © = (z1,...,24) € R?

Frequency variables: w = (wy,...,wy) € R?

flw)=F{f} = F()e 7 dgy - - day

1 . .
<w7m> .« e e pr—
(2m)? Jga flw)e dwr - dwg = f(@) (a.e.)

FHIY =

Sufficient condition for existence:

f e Li(R%) = f(w): bounded, continuous
and tends to 0 when w — +oo

(Riemann-Lebesgue Lemma)

Unser: Image processing

Finite-energy functions

m Fourier analysis in Lo (Plancherel’s extension)
felyRY) & feLyRY

= Parseval's formula: (f,g)r, (f, )L,

[ @) @)y edes = o [ )i (@) du -y

= 2m-isometry (energy conservation)

1 A~
11, = Gyl 1

1-18
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Separability

m Separability of Fourier kernel: ¢7(@=2twyy) — giwe® . piwyy

Equivalent sequence of 1D calculations:

(1) 1D Fourier transform along = (y = Const)

: +o0 |
Jy(wesy) = / flx,y)e7*=*dx

— 00

(2) 1D Fourier transform along y (z = Const)

A +oo A .
Flwmwy) = / F(was y)eI=uvdy

— 00

Multidimensional Fourier transform inherits most
properties of 1D Fourier transform!

m Separable signals (or transfer functions)

A A~

fx,y) = fi(@) - foly) & flwmwy) = filws) - fa(wy)
d
In d dimensions: f(ac):Hfi(aci) o f(w):H (wi)

Unser: Image processing

Fourier properties

= Duality: f(x) RN (2m)4 f(—w)

= Symmetry:  f(x) real & ffw) = f(-w)

= Isometry: 11l = (2m) =2 f|

= Shift: fl—mg) <o e @ f(w)

= Modulation: o f(@) L flw—wo)
= Scaling: f@/a) < o f(aw)

« Affine transformation:  f(Az) < |detA|"'f (A7) w)
A : non-singular matrix

THD 2, i)

+oo  ptoo gm+n £
= Moments: / / Ty f(x, y)dady = j™ &

dwirOwyy

= Differentiation:

w=0
In particular: f(x)dzy ---dzg = £(0)
Rd

= Convolution: (frg)x) & flw) jw)

= Multiplication: flx) - g(x) RN 1 (f*g)(w)

Unser: Image processing
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Example of computation

m 2D Gaussian
g(z,y) = e~ (@ +v)/2
1. Use separability
glz,y) =e T2 eV 5 Glwg,wy) = f(we) - flwy)

where f(z) = e L f(w) = /+OO f(z)e 9% dx

—00
2. Determine 1D Fourier transform
Table or explicit calculation
e—m2/2 (L o e—w2/2

S Gl wy) = 2 e E2

. 1-21
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Dirac impulse

Abstract definition: Vf € C°(R), (f,d) = /+Oo f(x)d(z)dx = f(0)

— 00

C°(R): the space of continuous functions over R

m Properties

—+oo
= Normalized integral: / d(z)dx =1 (f(x) =1)

oo oo
= Fourier transform: §(z) N §(x)e 9%dxr =1 (f(z) = e77v7)
= Convolution: Vg € CY, (g *6) (z) = g(x) (f()=g(z—")

m Explicit construction
+oo
= Window function ¢(z) € L1 (R) such that / o(r)dr =1
0. ¢(r) = —=exp(—2/2)

400
1
= Integral-preserving dilation/contraction: / —‘cp (£> de =1

e la
= O(2) = lim (ﬁ” (9)

Unser: Image processing
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Multidimensional Dirac impulse

Abstract definition: Vf € CO(R?), (f,0) = f(x)d(x)dxy ---dxg = f(0)
Rd

Multidimensional Dirac impulse is separable:

dz,y) =68(z)-0y) < 1

d
In d dimensions: d(x) = H d(z;)
i=1
m Properties
= Normalized integral: (4,1) = d(x)dxy---dzg =1
Ra
= Fourier transform: §(x) N S(z)e 9@ dgy - drg =1

Ra
= Multiplication: Vf € C°, f(x) - §(x — xo) = f(x0)d(x — x0)
= Sampling: Vf € C°, (f,6(- —z0)) = | f(x)d(x — o) dzy---dza = f(0)
Rd

= Convolution: Vf € C° (f %6) (x) = f(x)

= Scaling: § (z/a) = |a|® - §(x)

1-23
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Dirac-related Fourier transforms
m Constant
—+o00
One-dimensional: 1 L / eIty = 7
o | |
Akl}—loo » e 7“dx =27 - §(w) (or by duality)
Multidimensional: 1 L (2m)4 6 (w)
m Ideal line
fla,y) =0@) 1= filz) foly) < filws): falwy) =1-276(w,)
Y Wy
“Infinite” amplitude: 4(x)
x Wy
1-24
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More realistic line model

m Rectangular shape
A wy

f(x,y) =rect(z/a) - rect(y/A) RN |a]smc ai \A\smc

Reminder:

1, ze[-%+3 i
rect(x) = F20 4l < sine <i> = sin(w/2)
0, otherwise 2m w/2

1-25
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Application: finding the orientation

Problem: Design a (real time?) system that can determine the orientation of a linear
pattern placed at an arbitrary location in the image.

m Reasons for working in the Fourier domain
Translation invariance
9(@) = f@—m0) > f(w) eI -
Rotation property
go(@) = [(Rox) = f(Row)

1-26
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Problem solution

m Compute Fourier inertia matrix

M- - IS wi|f(w)|2 dw,dw, ffwxwy|f(w)|2 dwydw,
| Sl f@)P dwedwy [ [ @f|f (@) dwsdw,
o | e f), ducf)) Gunf). o, fw)
| (wy (W), jwaf(@)) (jwyf(w), jw,f(w))

m Determine axes of inertia

u,{ )\1 0
Eigen-decomposition: M = . . [ U1 Us }

’Ulg 0 )\2

u; : eigenvector in the direction of the long axis
us: eigenvector in the direction of the short axis

m Fast algorithm:  pM = [ ]

_ 1-27
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Orientation estimation: examples

= Image 1: ' -
Measured angle: 25° + 2°
Computed angle: 27°

= Image 2

Measured angle: 44° + 2°
Computed angle: 45.6°

1-28
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Importance of the phase

= Fourier transform

~

flw) = Flx)e @™ Ay - dag =
Rd

fw)| - exp (j@7(w))

m Fourier modulus:

=
3
I
~ N
=
3
~h»
*
3
N—
=
~
\v}
I
=
)
=
3
\V)
_|_
=
=
=
3
\}

= Fourier phase:

P p(w) = arg (f(w)) et (Re [f(w)} )
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Module or phase ?

Module(Image1), Phase(Image2)
O B TR T
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1.3 CHARACTERIZATION OF LSI

Linearity:  7{a1f1 + azfo}(x) = axT{f1}(®) + axT{f2} ()

Shift-invariance: T{f(-—zo)}(x) =T{f()}(x — x0)

= Multidimensional convolution
= 2D convolution theorem
= Modeling of optical systems

= Examples of transfer functions

Unser: Image processing 1-31

LS| system as a convolution operator

Image as a “sum” of Diracimpulses:  f(x) = (0 * f) (z) = f(w)d(x—u)duy - - - dug
Rd

m Response of a linear system (superposition principle)

d(x —u) h(z,u) or hysi(z—u)
Ty
f(z) g(x) = N Flwh(z,w)duy - - dug

= Impulse response (possibly, space-dependent) :  h(x,u) = 7{i(- — u)}(x)
= Arbitrary input:  7{f}(x / flw) T{o(- — uw)H(x)duy - - -dug  (by linearity)

m Linear, shift-invariant system
= Impulse response (or point-spread function): h(x) = Tus1{d(-)} () = h(x, 0)
= Shift-invariance = 7y gi{0(- — u)}(x) = h(x — u)
= Arbitrary input:  Trsi{f}(x / f(u w)duy -+ -dug = (h* f)(x)

1-32
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2D Convolution theorem

m 2D convolution integral
+oo +oo
(f*h)(z,y) = / / f(u,v)h(x —u,y — v)dudv

400 p+4oo
_ /_ /_ h(u,v) f(z —u,y —v)dudv = (h* f) (z,y)

m Convolution theorem: (Fxh)(x) < flw)h(w)
Proof: (in d dimensions) g@)=(f*h)(x)= | flu)h(z—wu)du;---duy
R4
i

§(w) /R < [ Fh(w — w)duy dud) e i@ qzy . day

/ < flu)h(v)e 7@ w) dyy - dUd> dvy---dvg  (change of variable v = = — u)
Rd \JRd

Flw)e @) duy - dug / B(0)e=3) du, - - dug
R4 Rd

Technical hypothesis: h, f € Li(R?) = g€ L(R?)

, 1-33
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Transfer function
f(x) 9(x) = Tusi{/f}(=)
) — H(w) > )
ol (w.z) ). edlw@)
linear shift-invariant system
m Method 1: identify the impulse response H(w): Engineer notation for /(w)
g(x) = » fyh(z —y)dy: ---dya = (h* f) (z)
Transfer function: #{h} = H(w)= / h(x)e @) day - - - day
R4
m Method 2: Fourier-domain formulation
Input/output relation: §(w) = H(w) - f(w) =  Transfer function: H(w) = ?Ew;
w
m Method 3: use eigenfunction property of complex sinusoids
. J{w,x)
Compute: Trg{e? @} = \.ed@® =  Hw)=\= %
1-34
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Modeling of optical systems

f(z,y) ‘" E"{lj g(z,y) = (h* f)(z,y)

h(zx,y): Point Spread Function (PSF)

Diffraction-limited optics = LSI system

m Aberation-free point spread function (in focal plane) Radial profile

wr

h(z,y) = h(r) = C - {

where r = /22 + 42 (radial distance)

m Effect of misfocus

Point source output

(in focus) (defocus) 1-35
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Optical transfer function

H(wg,wy) = F{h} : Optical transfer function (OTF)

|H (wg,wy)| : Modulation transfer function (MTF)

m Isotropic: H(w;,wy) = H(w) wherew = /w2 + w2 (radial frequency)

Radial frequency

Transfer function of a lens for various degrees of misfocus

1-36

Unser: Image processing



Examples of transfer functions

m CCD camera m*
Sampling aperture (photosite or “pixel” integration area): il |

Y

1 Lw,\ . L
h(z,y) = ﬁrect (%)mect (%) NN H(wy,w,) = sinc <;:T>~51nc (;;y)

—
L

m Motion blurr

Hypothesis: translational motion of the camera: x(t)

1 [T S
mmzféf@—%@w = mm:fleﬂwMMt

Example:
uniform motion in x: xo(t) = (at/T,0) Y

H(w) = e77%s/2ginc (%) Z, h(z,y) = rect (w_a/2> -0(y)

lal a

x 1-37
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1.4 SUMMARY

= Continuous-space images are modeled as functions f(z, y) of the spatial variables = and y.

= These functions have finite energy: f € Lo. It is convenient to view them as points in a
Hilbert space.

= A continuous-domain image-processing operator is a mapping 7 : Lo — Lo.

= The complex sinusoids eI (@) are the eigenfunctions of linear shift-invariant (LSI) systems.
They are (27 /||w||)-periodic plane waves that propagate in the direction w.

= The 2D Fourier transform of an image reveals its spatial frequency content. The Fourier
phase contains the information most relevant perceptually (contours).

m The 2D Fourier transform is very similar to the 1D one; one simply replaces the scalar vari-
ables x and w by vectors. Thus, it has essentially the same properties.

= The 2D Fourier transform of a separable signal f(z,y) = f1(z)f2(y) should be determined
using 1D transforms only.

u A LSl system performs a convolution.

s Continuous-space LSI systems are entirely characterized by their impulse response (point-
spread function or sampling aperture), h(x,y) = Tusi{d}(z,y), or, equivalently, by their

transfer function H (wy, wy) = F{h}(wg,wy) .
Unser: Image processing 1-38



